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Abstract—This paper proposes a network architecture that
utilizes novel resource prediction models for optimal selection of
multimedia content provision methods. The proposed research
approach is based on a prototype system, which exploits a
resource prediction engine, utilizing time series and epidemic
spread models, for optimal and balanced distribution of the
streaming data among content delivery networks, cloud-based
providers and home media gateways. The proposed epidemic
diseases models adopt the characteristics of the multimedia
content delivery over the network architecture. In this context,
the paper aims to present the advantages of using such models,
by presenting and analysing an epidemic spread scheme for
Video on Demand (VoD) delivery, to predict future epidemic
spread behavior. In addition, the paper presents two algorithms,
adopted in the prototype network architecture, for optimal
selection of multimedia content delivery methods, as well as
balanced delivery load, by exploiting the resource prediction
engine. Both algorithms and models are evaluated to establish
their efficiency, towards effectively predicting future network
traffic demands. The simulation results verify the validity of the
proposed approach, identifying fields for future research and
experimentation.
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Networks, Epidemic Spread Models, Quality of Experience,
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G IVEN the tremendous evolution of multimedia-related
technologies over the Internet, more pressure is applied

for further research and development on the field of multi-
media content distribution. A significant part of the global
Internet traffic is generated by video and audio on demand
services or other multimedia services, while the amount of this
traffic is expected to double in the future [1], leading towards
the Future Media Internet. Recent advantages in connected
media technologies and social networks are the driving forces,
while broadband infrastructure growth and cloud computing
that has emerged as a new paradigm for hosting and delivering
services over the Internet, are the keystones for the upcoming
Future Media Internet. The rapidly transforming environment
that surrounds the citizens forces them to the demand of more
community-centric experiences through networked/connected
media and social networks and to even better Quality of
Experience (QoE). Media content delivery plays a key role
for the QoE, pressing for more research on novel network
architectures, as well as the relative components that allow
efficient and balanced content delivery. In addition, novel
algorithms and models for the prediction of the resources are
vital to be adopted for efficient multimedia content provision.

Tackling such challenges, this paper goes beyond the current
state-of-the-art, elaborating on a new multimedia services
delivery solution. The proposed solution is based on the
optimum allocation of the resources used for content trans-
mission to efficiently satisfy different users requests through
the exploitation of existing servers infrastructures capabilities.
Such capabilities are available in conventional clouds (i.e. pub-
lic or private computing infrastructure configurations, usually
offered by over-the-Top providers) and in Content Delivery
Networks (CDNs). Additionally they can be offered by Home
Media Gateway Clouds (i.e. Home Gateways/Community
Gateways configurations, exploited in peer-to-peer mode).
The proposed approach foresees a new business model in
multimedia services delivery over the Internet, strongly but
smoothly leveraging (in an evolutionary way) new mechanisms
and systems. Among others an epidemic spread model is
proposed that is proven to accurately describe a Video on
Demand (VoD) spread.

In this context, this paper is organized as follows: Section II
presents related work on Resource Prediction Engines and on
Epidemic Models, as well as the research motivation of this
paper. Section III elaborates on the proposed research approach
based on a novel network architecture that utilizes a resource
prediction engine, an epidemic model and two algorithms for
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optimal multimedia services provision. Finally, Section IV
provides the evaluation results and Section V includes the
conclusion of the paper, accompanied with fields for future
research.

II. RELATED WORK AND RESEARCH MOTIVATION

Several existing research attempts elaborate on the combi-
nation of different delivery methods, in order to achieve better
QoE for the users. In [2] Xu et al. propose a CDN-P2P hybrid
architecture for cost-effective streaming media distribution that
combines the advantages of using CDN for providing high
QoE with the low cost of using P2P-based stream. Yin et al.
in [3] present the design and deployment of a Hybrid CDN-
P2P System for Live Video Streaming, demonstrating the
improvement in startup delay time and in stability. In [4] Ciullo
et al. also propose a peer-assisted video distribution in order to
reduce the server workload and to introduce scalability to the
system. They suggest a stochastic fluid framework that allows
the estimation of the needed bandwidth for the satisfaction of
the user requests based on predefined scenarios. In an energy-
aware approach in [5] Mandal et al. analyzed and presented the
advantages of the integration between CDN and P2P networks.
Zhang et al. conducted a measurement study on Kankan, that
is one of the leading VoD streaming service providers in China
and is based on a hybrid CDN-P2P architecture. They present
how the provider utilizes the P2P network for storage and
streaming of videos, and how the CDN servers assist the
streaming procedure [6]. Current research approaches focus on
how to benefit from the combination of the different delivery
methods but they do not take consideration of handling each
resource separately. In comparison to such approaches, our
proposed solution goes beyond the current state-of-the-art,
by handling each resource (i.e. streaming channel) separately
based on the prediction of the future demand for each resource,
as well as the predicted network metrics. The early prediction
before the actual need provides to the proposed system the
ability to enforce management actions to maintain a high
quality of experience (QoE) for the users [7], [8].

A resource prediction engine (RPE) constitutes an important
part of multimedia content delivery system, in order to offer
the desired QoE to the end users [9], [10], [11]. Its role
is to provide the ability to efficiently predict the needed
bandwidth capacity and the upcoming network fluctuations.
The prediction engine has to be based on novel methods and
models that can accurately forecast the future demands, in
order to trigger through a management plane the proper actions
for keeping the desired quality for the streaming sessions. In
[12] Niu et al. presents some time-series analysis techniques
to predict the server bandwidth demand and the peer up-
load for content delivery in peer-assisted Video-on-Demand
(VoD) services. The analysis includes prediction of future
population for each video channel, by analyzing and fitting
to existing models, past data about the population of video
channels. The seasonal ARIMA (auto-regressive integrated
moving average) model [13] is exploited, for avoiding the
periodicity. Additionally they use machine learning techniques
for inferring the initial population of a new released channel,

by utilizing pass data from newly released videos as training
data. For the prediction of the server bandwidth demands by
a video channel at future time, the ARMA (auto-regressive
moving-average) model was used [13]. They prove that the
entire procedure has reasonable computation cost. In [14],
Niu et al. present a system for VoD providers in the Cloud,
that provides the ability to predict the upcoming need for
bandwidth in order to auto-scale accordingly. The near future
demands expectations are estimated based on the history of
demands as monitored by the cloud monitoring services. This
provides the opportunity to reserve the minimum bandwidth
needed for satisfying the demand in the desired quality. In
a similar manner our proposed RPE utilizes a combination
of statistical models for the prediction of future needs. The
innovation originates from the selection of the appropriate
model, out from a pool of statistical models (ARMA [13],
ARIMA [13], Theta method [15] and cubic splines [16]),
that better describes each content delivery. Additionally the
epidemic model proposed by this paper, provides to the
RPE the capability to predict sudden and intense increase of
delivery need for specific content. For a resource prediction
engine able to forecast future demands, the recent advantages
in connected media technologies and social networks should
be taken into account. Social networks play a significant role
in content delivery, by providing ways of interactions among
users that can lead to a lightning spread of content [17]. In
[18] Gonccalves et al. suggested a probabilistic resource provi-
sioning approach that utilizes the basic susceptible-infectious-
recovered (SIR) model, developed for epidemiology spreading,
to represent the sudden and intense workload overflow in VoD
delivery process. More specifically they use Markov chain to
describe the behavior of the users and they trace the cases of
epidemic spread, or as the call it buzz effect, by introducing a
Hidden Markov Model with two different rates to represent
the buzz and buzz-free behavior. Contrary we propose an
epidemic model with more states, customized to describe
the epidemic spread of content through the proposed overall
system. Additionally our suggestion for the prediction is based
on fitting historical data into the proposed model. Epidemic
model spreading in scale free networks has been intensively
studied [19]. In [20] Pastor and Vespignani analyzed data
from computer virus infections and they defined a dynamical
model for the spreading of infections on scale-free networks.
The spread of computer viruses really resembles the epidemic
spread of human diseases. In this context, this paper extends
the basic disease models, by presenting a novel model that can
be used to accurately describe the multimedia content delivery
(i.e. VoD delivery) and so it can help forecasting epidemic
spread of multimedia content. The majority of disease models
are based on a splitting in compartments of the individuals
in a population based on their disease status [19], [21], [22],
[23]. The basic susceptible-infectious-recovered (SIR) model
provides the foundations of almost all mathematical epidemi-
ology. The differential equations that describe the model are
the following:

dS

dt
= b.N − β.S.I − d.S (1a)
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dI

dt
= β.S.I − δ.I − d.I (1b)

dR

dt
= δ.I − d.R (1c)

S + I +R = N (1d)

In these equations, S, I and R refer to the number of suscep-
tible, infectious and recovered individuals, respectively, in a
population of size N. The other parameters are the birth rate,
b, the natural death rate, d, and the rate of recovery from
infection, δ. The force of infection, π, is the rate, at which
susceptible individuals become infected. It is a function of
the number of infectious individuals; this parameter contains
information about the interactions between individuals that
lead to the transmission of infection. When the population
is randomly mixing, the force of infection can be calculated
as follows:

π = β.
I

N
(1e)

where β is the effective number of contacts per unit time. This
leads to a nonlinear term (β.S.IN ) representing the transmission
of infection, generating a variety of rich dynamical behaviours.
Theoretical modelling of how diseases spread in complex
networks is based on the assumption that the propagation is
driven by reaction processes and that the transmission occurs
from every infected neighbouring entity at each time step, pro-
ducing a diffusion of the epidemics on the network. Possible

modifications on the available states of the SIR model, lead
to some widely used epidemic models like the susceptible-
infectious-susceptible (SIS) model where the recovered state
does not exist and individuals are considered immediately sus-
ceptible. In the same context the maternally derived immunity-
susceptible-infectious-recovered (MSIR) model compared to
the SIR model it includes a state for a population born
with immune to the disease. In such a model, an additional
differential equation is needed to describe the transitions from
state M to the state S. This equation takes into consideration
the percentage of population with immunity and its lasting
period [24], [25]. Similar models have been used in finite-
size scale-free networks, for traffic-driven epidemic spread
[26], for efficient data streaming [27] and for virus spread
in such networks [28]. Also, this approach has been used in
the area of multimedia content distribution, [17], in dynamic
resource management [18], and for segmented file sharing
[29]. Although there is impressive research in epidemic models
for use for the description of behaviour of computer networks,
there is a lack of a model, able to describe the specific need for
multimedia content delivery architectures. Part of this paper is
dedicated to an epidemic model for that purpose. Additionally,
this paper elaborates on a network architecture that predicts the
future content delivery demands and the future network usage,
by utilizing novel models and algorithms, performing all the
necessary adaptations to deliver the content in an optimal and
balanced way for the optimal provision of the desired Quality
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of Service (QoS) and QoE to the end users.

III. EPIDEMIC MODEL FOR OPTIMAL MULTIMEDIA
SERVICES PROVISION USING A RESOURCE PREDICTION

ENGINE

A. Network Architecture

The introduction of a Resource Prediction Engine with Epi-
demic Models utilization, towards the provision of multimedia
services, demands a network architecture with management
components in different layers that cooperate during the mul-
timedia delivery process, achieving optimal content delivery.
The proposed network architecture is shown in Fig. 1. The
upper layer is called Central Management and Control (M&C)
plane and it coordinates the collaboration environment, by
interchanging information with existing M&C planes of the
CDN and Cloud providers, as well as the distributed M&C
plane of the Media Home Gateway Cloud (MHGC) provider,
consisted of user gateways, forming a Peer-to-Peer (P2P)
network. The proposed network architecture as presented in
Fig.1 consists of the following entities: a Media Distribution
Middleware (MDM), a Media QoE Meter (MQM), a Me-
dia Services Manager (MSM), an Enhanced Home Gateway
(EHG) and a Media Advanced Streamer (MAS). In a bottom
to top presentation of components based on the functionality,
the EHG entity is part of the home equipment of the end
users. The control modules of EHGs constitute the Media
Home Gateway Cloud (MHGC) M&C plane and they are
responsible for creating the MHGC ad-hoc system from a set
of peer-to-peer connected EHGs. Each EHG receives content
requests from the users, requesting data from the MDM, about
which MHGC peers should get involved to efficiently deliver
requested content. EHG collaborates with MSM entities that
reside in CDN/Cloud M&C planes and manage all Service
Providers resources, to obtain media content requested by the
user, if the content is not stored on any of EHGs belonging to
given MHGC. The MSM, according to the recommendations
received from the MDM, takes a decision on which server
should stream the requested media and with which bitrate.
In this way, the MSM, contrary to the existing solutions,
performs adaptation decision, taking into account not only
the available bandwidth, but also considering other important
information addressed by the MDM, such as the estimated
QoE value and the prediction of the potential upcoming
streaming sessions. The MAS entity resides in the CDN/Cloud
domain as a standalone component. Its role is to perform the
streaming process, according to the instructions received from
the MSM/EHG entity. MQM component is responsible for
continuous monitoring of network metrics at the users and the
Service Providers domain access points, as well as the users
context and preferences. Based on the data gathered by the
set of the MQM probes, distributed all over the domain, this
entity provides to the MDM the related data about the current
network conditions and the estimated value of QoE available
for a user. Moreover, the MQM sends alerts to the MDM,
only if any of the monitored QoS/QoE parameters declines
below the allowed level. MDM is the main component of
the Central M&C plane. It executes all necessary operations

and determines all data required for optimal allocation of the
available resources at each Resource Providers domain. As a
result, the MDM returns guidelines, which resources should
be used for handling given users request, to achieve the best
(in terms of efficiency) resource exploitation.

B. Resource Prediction Engine for Optimal Multimedia Ser-
vices Provision

The MDM adopts a resource prediction engine, in order
to be able to predict future demands for resources. The pre-
diction is divided in long-term prediction for future demands
for resources and short-term prediction for some important
network metrics like throughput. The long-term prediction
takes as input the demand for each resource in the past,
using a combination of statistical methods and algorithms
for the adaptivity to description models, in order to predict
future demands. This provides the opportunity to the system
to make the optimal distribution of data in Clouds, CDNs
and EHGs based on the prediction before the actual need. On
the other hand, the short-term prediction is used for predict-
ing and preventing upcoming network congestion issues, by
triggering the proper management actions. Fig. 2 presents the
internal architecture of the MDM component. The QoS/QoE
Politics Traffic Data History component collects and stores
the monitoring data delivered from the MQM. It forwards
it periodically to the Media Traffic Forecast to generate the
prediction for the traffic in the network. The Media Traffic
Forecast utilizes the epidemic model for the prediction of
the upcoming epidemic or not spread of the content and the
time series models for the prediction of future values of the
resources. The outcome of the forecasts is used as input to the
Resource allocator/scheduler. It uses algorithms that combine
the current and predicted values of specific metrics to decide
on the optimal delivery methods and the most suitable servers
to perform the multimedia content delivery. The results are
feeding the MSM component, as recommendations regarding
which server should stream the requested media, while at the
same time the Bandwidth Allocation Optimizer calculates the
optimal bandwidth allocation for the P2P delivery between
the MHGC devices. It is an online system, which takes into
consideration the network metrics that come from the MQM
to decide on the most suitable peers to perform the streaming.
It delivers that information directly to the MHGC devices.
MHGC devices exchange management information between
them and together they constitute a M&C plane that manages
the P2P network between the EHG devices. The Adaptivity to
resources conditions component ensures that the Bandwidth
Allocation Optimizer runs periodically to retain the optimal
suggestions based on updated information from the resources
and network.

C. Epidemic Models for Prediction of VoD download rate

The paper examines the effectiveness of the epidemic mod-
els on the prediction of VoD usage as part of the general
issue of optimal content delivery. As shown in 3, the model
divides the population into several compartments based on the
percentage of the population in each state. The Susceptible (S)
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group includes subscribers that can download the Video, the
Active (A) includes the users that are currently downloading
the Video, the Infected (I) contains the users that downloaded
the Video and they can spread it through social networks (if
they liked the video), the Recovered (R) contains the Users
that passed from the Infected phase but they do not spread
the Video any more (after some period of time) while the
Deleted (D) group includes users that removed the Video after
sometime or the Video was automatically removed from the
cache after some period of time. The Turned down (T) group
includes the Users that belonged to the S category and they
took the decision to turn down the Video, so they will never
download it. In the model, NS(t), NA(t), NI(t), NR(t), ND(t),
NT(t), t ≥ 0, are stochastic processes representing the time
evolution of each population.

Suppose there are n clients of the VoD provider, they all
belong to the group S at time=0, when a VoD is initially
uploaded by the provider. The transition rate from state S to A

consists of the probability to have a new spontaneous viewer,
plus the probability to have some users that learned about the
video from their social contacts and they came to a decision
to watch the video. So the equation (1e) of the SIR model
that expresses the non-linear term of the rate of transmission
of infection, can be extended to:

π(t) = γ + β.NS(t).NI(t) (2a)

where β is the social network contact rate for users based
on the specific video, and γ is the number of spontaneous
viewers that in some cases can be considerable important
since a specific VoD may be advertised and promoted by
the VoD provider. For the transition from Active state to
Infected state there is a need of consideration of the download
rate of Users and of length of the Video. Since the Video
download is happening directly during viewing and there are
mechanisms for balanced delivery the time needed for the
transition is considered as a random variable and is expressed
as a Poisson process with mean value the duration of the
video. The transitions, from Infected to Recovered and from
Recovered to Deleted, are also considered as random variables
since each user can spread the information to its social network
for a random period of time and can also keep the video in in
its EHG device again for a random period of time. So for the
proposed model, the specific transitions are again described
as Poisson processes with mean times the estimations of how
long the Users are spreading the information to their social
networks and the period that the Video stays in the device of
each user. The rates can be expressed as follows:

δ(t) =
1

videoDuration
(2b)
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κ(t) =
1

SpreadPeriod
(2c)

λ(t) =
1

KeepInCachePeriod
(2d)

This model makes the following assumptions (1) A user that
downloads a video will never request it again, (2) There are
no changes in user’s population/subscribers, (3) Users in T
state that turned down the video will never become Susceptible
again. The first two assumptions help on making the analysis
simpler without losing the generality, since they are well fitting
a VoD provider use case. Regarding the first assumption, When
a user downloads a video, it remains in its local EHG for a
few days. So a re-download is performed only in the case
that a user wishes to view it again after that period. This case
does not importantly affect the analysis, since the epidemic
spread occurs in short periods of time and with the existence of
cache it is unlikely to have double downloads during the study
of a single epidemic spread incidence. Similarly the second
assumption is realistic since the population of the subscribers
remains almost constant within such short periods. The third
assumption does not really change the analysis, since it is not
possible to calculate the population of state T before the actual
spread of the Video. In the measurements S and T populations
are handled together and they can be separated only in the end
of each VoD life cycle. The following equations describe the
model:

dS

dt
= −(β.I + γ).S (3a)

dT

dt
= (β.I + γ).S.(1− p) (3b)

dA

dt
= (β.I + γ).S.p− δ.A (3c)

dI

dt
= δ.A− κ.I (3d)

dR

dt
= κ.I − λ.R (3e)

dD

dt
= λ.R (3f)

S + T +A+ I +R+D = 1 (3g)

Fig.4 presents simulation results executed in Matlab. The
aforementioned differential equations were expressed as Mat-
lab equations and the simulation was performed in timesteps.
After each timestep part of the population was moving to
a different state based on the equations and the rates. In
simulation results of Fig. 4 the rates are as follows: β =
0.5, δ = 0.1, κ = 0.01, λ = 0.005, p = 0.8. The whole
population belongs to the S state(S=1) when t=0. At time =
50timesteps, the population of Active(A) increases showing
that there are active users downloading the Video, while at
time = 70timesteps the population of Infected(I) increases
significantly. An important outcome is the final population
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in state Turn Down(T) that tends to p − 1 = 0.2 while
the population of Deleted(D) tends to p = 0.8 as expected
since 80% of the population chooses to view the Video. The
most important line is the A(t) since it depicts the bandwidth
need for covering the needs of the active downloads. It is
clear that in case of epidemic spread of a specific Video,
the population of simultaneous downloads is significantly
increased, something that increases the difficulty in delivering
high Quality of Service. A solution to the problem is the
use of P2P delivery complementary to the Cloud and CDN
delivery. An important observation is that by the time when
the Active (A) users introduce a significant increase in their
population, there is always an important number of users in
Infected (I) and Recovered (R) states that can seed the Video
for the them through P2P delivery method. Finally, it is clear
that the transmission from Recovered (R) state to Deleted (D)
does not affect the needed recovered population when it is
most needed.

Lemma 1: if γ > 0 then

lim
t−>∞

(T (t) +D(t)) = 1

Proof T (t) = T (t)− T (0) =
∫ t
0
dT
dt dt

Since dT
dt = −(1− p)dSdt , we conclude that T (t) = −

∫ t
0
(1−

p)dSdt dt = −(1− p)(S(t)−S(0)) = (1− p)(1−S(t)). Notice
that dD

dt ≥ 0, hence D is increasing. D(s) ≤ 1 for all s
therefore lims→∞

dD
dt |s = 0. Hence, lims→∞R(s) = 0 if we

assume λ > 0. Similarly:
• lims→∞

dR
dt |s = 0, and therefore lims→∞ I(s) = 0

(assuming that κ > 0),
• lims→∞

dI
dt |s = 0, and therefore lims→∞A(s) = 0

(assuming that δ > 0),
• lims→∞

dA
dt |s = 0, and therefore lims→∞ S(s) = 0

(assuming that γ > 0).
Hence, since S + T + A + I + R + D = 1, we see that
lims→∞ T (s)+D(s) = 1 By the equation T (t) = (1−p)(1−
S(t)), we see that lims→∞ T (s) = 1− p. Hence, we also see
that lims→∞D(s) = p.
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The outcome of Lemma1 is the fact that in infinite time all
the population will finally go to the state T-Turn Down and
D-Deleted, given we have γ > 0. The lemma is useful for the
analysis after the end of the content delivery for extracting the
percentage of users that turned down the video.

An important metric for the model is the basic reproduction
rate of the epidemic R0 that can be calculated as in (Global
analysis of multi-strains SIS, SIR and MSIR epidemic mod-
els):

R0 =
p ∗ β
κ

Lemma 2: if R0 > 1 then the epidemic cannot maintain
itself

Proof If R0 > 1, then on average, each infected individual
infects more than one other member of the population and a
self-sustaining group of infectious individuals will propagate.
If R0 < 1, then the epidemic cannot maintain itself because
each individual, on average, infects less than one member of
the population.

The estimation of R0 is not easy before the actual spread of
the VoD because the β value is not easy to be predicted, since
the social impact of each VoD is different. An estimation can
be done based on some of the Video properties, (category,
actors, director etc) and some history data, but this is out of
the scope of the specific paper.
It is interesting to study and compare the model in the case
where there is no epidemic spread(R0 < 1). To simplify the
analysis it is safe to say that if there is no epidemic spread it
can be considered that β = 0. In this case the Infected(I) and
Recovered(R) population are in the same state Captured(C).
The equations are transformed in the following:

dS

dt
= −γ.S (4a)

dT

dt
= γ.S.(1− p) (4b)

dA

dt
= γ.S.p− δ.A (4c)

dC

dt
= δ.A− λ.C (4d)

dD

dt
= λ.C (4e)

S + T +A+ C +D = 1 (4f)

By solving the first order differential equations for S and A
with consideration that S(0) = 1 and A(0) = 0 the outcome
is:

S(t) = e−γ.t (5a)

A(t) =
γ.p

δ − γ.p
(e−γ.t + e−δ.t) (5b)

Fig.5 presents simulation results when the rates are as follows:
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δ = 0.1, κ = 0.01, λ = 0.005, p = 0.8. The difference it
is obvious since the Active(A) population remains very low
through the whole delivery process. If we consider that the
system is able to deliver simultaneously to up to a specific
percentage of Users, then the value of γ can be modified. The
VoD provider is able to manage the advertise, or the position
in the menu of each VoD and so it can modify the γ value of
the spontaneous Users.

Lemma 3: Prediction based on the model. If the A(t) is
exponential then it is epidemic, if the A(t) is polynomial then
it is not epidemic. In case of predicting an epidemic spread
of the Video the algorithm is modified.

Proof In model with epidemic spread
dA
dt = (β.I + γ).S.p− δ.A ≈ β.I.S.p

In model without epidemic spread
dA
dt = γ.S.p− δ.A ≈ γ.S.p

The multiplication of S and I populations is what causes the
epidemic spread. An early perception of such behaviour could
give a benefit the content delivery system.

D. Resource Prediction Algorithms with Use of Epidemic
Models

An internal view of the implementation architecture of the
prediction engine as part of the Media Traffic Forecast is
presented in Fig. 6. Input comes from the Monitoring Service
and more specifically the MQM through the QoS/QoE Politics
Traffic Data History component. The prediction engine is
implemented in Java and it is divided in two parts based on
the functionality concerning Time Series Models and Epidemic
Models. For the implementation of time series models, there
is a use of the JRI, Java Interface [30] for the interactions
with the R-system [31]. R is a very popular free software en-
vironment for statistical computing and graphics. The standard
stats package of R-system includes multiple time series models
and prediction methods. The forecast package [32], [33] of
R implements automatic forecasting with multiple methods,
including ARIMA models, exponential smoothing methods,
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Theta method [15], cubic splines [16] and many others. Hyn-
dman and Khandakar in [33] present the implementation of
exponential smoothing methods and the ARIMA modeling ap-
proach in the forecast package. The proposed prediction engine
uses the aforementioned packages, extending them in order to
achieve optimal prediction. If a long-term (i.e. for the next
days) prediction has to be achieved for the needed bandwidth
of a specific Video On Demand (VoD), the prediction engine
needs to exploit the history of the bandwidth reservation for
the specific VoD. The history data is utilized for fitting in the
proper statistical model, suitable for the specific VoD and then
the forecast function performs the prediction. The result is the
estimation of the need of bandwidth for the specific VoD after
one hour. This value feeds the Resource allocator/scheduler to
decide how to serve the estimated future need. The epidemic
model is implemented in Java. It examines the history data
behaviour to conclude if it resembles the exponential function
something that would predict that the VoD spreads with
epidemic speed based on lemma3. The MDM component uses
the predicted future values for the metrics, in order to take
the decisions for delivery of requested media, which may be
streamed: 1) directly from the Cloud, 2) through deployed
surrogate servers of the CDN, 3) by establishing a Media
Home Gateway Cloud (MHGC) ad-hoc system and using a
combined P2P-based technology of distribution with multi-
source, multi-destination congestion control algorithms, or 4) a
combination of parts or all of them (thanks to stream-switching
adaptation technique). The results are forwarded to the MSM
component that is responsible for the actual streaming of
the data to the user. The selection algorithm is presented
below. Algorithm 1 gets as input the current and predicted
bandwidth needed for the delivery of specific content over the
system and triggers the proper mechanisms to accomplish it
in an optimal way. The neededBW variable that represents

MDM Prediction Engine

R-system

Prediction Engine

Forecast
· ARIMA
· Theta
· Cubic splines
· Exponential

Monitoring 
Service

tseries RMySQLxtable

JRI

Resources 
Scheduling and  

allocation Service 

Epidemic 
Models Analysis

SAIRDN model

Time Series 
Analysis

Fig. 6: Implementation Architecture of the Resource Prediction
Engine

Algorithm 1 Delivery Method Selection Algorithm

1: procedure SELECTCONTENTDELIVERYMETHODS
2: neededBW← maximum(currentBW,predictedBW)
3: epidemicSpread← fits(exponentialFunction)
4: if epidemicSpread = TRUE then
5: Use Cloud, all available CDNs and P2P
6: Reduce the VoD advertisement
7: Run the load balancing algorithm for DCs
8: else
9: switch neededBW do

10: case neededBW < lowThreshold
11: Use only Cloud.
12: case lowThreshold < neededBW <

highThreshold
13: NoOfDCstoUse ←

neededBW−lowThreshold
highThreshold−lowThreshold ∗AvailDCs

14: Use Cloud and NumberOfDCstoUse DCs.
15: Run the load balancing algorithm for DCs
16: case neededBW > highThreshold
17: Use Cloud, all available CDNs and P2P.
18: Run the load balancing algorithm for DCs

the expected needed bandwidth for the overall delivery of a
specific VoD, takes the higher value among the current and
the predicted bandwidth need as calculated by the prediction
engine. The epidemicSpread boolean variable, is assigned a
TRUE or FALSE value based on the behaviour similarity to
the exponential function, that indicates an epidemic spread
(lemma3). If epidemicSpread = TRUE then the algorithm
uses all delivery methods simultaneously and it informs the
VoD provider to reduce the advertisement of the specific
VoD. If epidemicSpread = FALSE it makes the selection
based on preset thresholds for bandwidth usage, based on
administrative high level decisions and network status. If
neededBW is below the low threshold, only the Cloud delivery
will be used. If it is above, CDN servers will be used. The
number of CDNs to be used is defined as a percentage of
the available servers, based on the distance of neededBW
from the low and high threshold. After the high threshold is
reached, a P2P delivery method is exploited. This algorithm
provides the advantage that the data is not distributed before
the actual need. In the case of a VoD with low customers
demand, the CDNs will not been used for its distribution. On
the other hand, if a VoD becomes viral and it is spreading
epidemically, an early prediction will occur, that will allow to
use all the available delivery methods to distribute the VoD
will rapidly. Finally, the P2P delivery method will be used,
only when needed, while at the time that this happens, the
number of the users already possessing the specific video will
be satisfactory with those users, acting as seeders to distribute
the VoD to the others.

The aforementioned load balancing algorithm for the load
balancing among Data Centers is presented below. Algorithm
2 takes as input the table W [x, y] that includes the workload
of each VoD on each Data Center (DC) and the number of
DCs to be used for the specific content delivery. It updates
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Algorithm 2 Load Balancing Algorithm

1: procedure LOADBALANCING
2: portion← 1 / NoOfDCsToUse
3: if VoD=new then
4: Add a column to the W[x,y] table
5: column = Column that represents the current VoD
6: Create a sorted table with the rows,

based on the number of 0 they include
7: W[x,column]=portion,

where x takes the first NoOfDCsToUse
values of the sorted table

the table and returns it with the new values to be used for the
balanced distribution of the content. The algorithm divides
number 1 (the whole percentage) to the number Data Centers
(DCs), which will be used, to calculate the portion of delivery
requests that each DC should handle. Then, it finds out which
column represents the specific VoD, if it already exists, or it
assigns a new column for a new VoD. Finally, it selects which
DCs will be used, starting with those that have more zero
values in their row, meaning that they do not serve many VoD
channels.

IV. PERFORMANCE EVALUATION ANALYSIS AND
EXPERIMENTAL RESULTS

This section demonstrates the ability of the epidemic models
to describe the spread of content over content delivery systems,
and the effectiveness of the Resource Prediction Engine to
predict future values of network metrics of the utilization
of network paths. The effectiveness of the whole proposed
system, is demonstrated by simulations of the usage scenarios.
Finally this section makes a comparison of the ability of the
proposed epidemic model, that was specially designed for
describing content delivery, to make an early prediction of
an upcoming epidemic spread of content compared to other
general purpose epidemic models. The monitoring data was
collected by a VoD platform [34] and all the videos had a
resolution of 480p.

For the evaluation of the forecast algorithms for the short-
term prediction, the monitoring data of the bandwidth usage
for serving the need of a specific VoD, was utilized. The
collected measurements were for a total of 30 minutes with
a period of 5 seconds, but to avoid periodicity of data, the
mean value per minute was used. The 80% (24 minutes) of
the data was exploited to feed the prediction engine. The RPE
as described in section III-D fits the data into the most suitable
model and it manages to perform a prediction for the future
values. The remaining 20% of the data is then used for the
evaluation, through a comparison between the predicted and
the actual value as shown in 7. The important part of the graph
is after the 24 first minutes, where it is clearly depicted that
the measured values remain very close to the predicted ones.

The prediction performance of the RPE is presented in
8. It includes the predicted value showing also the limit of
95% confidence and the corresponding (after the time passes)
measured values of bandwidth needs for a VoD channel. The
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Fig. 8: Test Scenarios for Bandwidth Usage of VoD Prediction

test scenarios presented are for 5, 30 and 60 min prediction.
It is clear that the predicted values are near the actual values
measured and in all cases the upper and lower limits of the
95% confidence interval include the measured value.

For the evaluation of the long-term prediction models we
collected the number of views per day for two videos provided
by a VoD platform [34]. The collected data is for 175 days.
The 80% of the data was exploited to feed the prediction
engine, while the rest of the data was used for the evaluation
through a comparison between the predicted and the actual
value as shown in Fig. 9. In the delivery of the first video, as
shown in Fig. 9a, the time series models are able to predict
future demands with enough accuracy. In the second video
delivery, as shown in Fig. 9b, the time series models are
incapable to predict the upcoming enormous increase of the
demand since the measured data did not fit well in any time
series model. The prediction based on the time series models
forecasted a steady number of viewers that was proven to be
wrong. The prediction based on the epidemic model managed
to forecast the upcoming epidemic spread and the predicted
values are close to the measured values. So the advantage of
using algorithm 1 is depicted since the algorithm tries to fit
the epidemic models and then if there is no epidemic spread
it utilizes the time series models.

For the evaluation of the ability of the proposed epidemic
model to make early prediction of an epidemic spread of
content through a VoD platform we compare its performance
with that of some general purpose epidemic models. The
comparison involves our proposed epidemic model, that was
specifically designed for describing the spread of content and
presented in section III-C, the basic SIR model as described
in detail in section II and the MSIR model [25]. We collected
from a VoD platform history data for seventeen videos that we
consider as viral because they had a peak demand of more than
10% of the total subscribers as simultaneous viewers. The data
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Fig. 9: Measured and Predicted number of views per day

about each Video includes measurements about the number of
users that were downloading the Video each moment, and so
we managed to divide them into the basic compartments of
the three models. In each model a number of variables can
get values under some constrains. We extended the forecast
package of R-system [33] to represent these models and
we used a function that automatically assigns values to the
variables to fit in the model based on the history data. The
amount of data needed in order to deduce that the data can be
fitted in the model reveals the time when the actual prediction
will be possible in real time. Fig. 10 presents the needed time
to predict the epidemic spread, as a percentage of the total
lapse time from the release of the video until reaching the
maximum value of simultaneous users, for multiple maximum
values of simultaneous users based on the seventeen videos of
the sample. The graph clearly depicts that all models are able
to predict the epidemic spread and in case of a high epidemic
spread the prediction is early. In all cases the proposed model
has better results since it makes an earlier prediction. The
SIR model does not perform very well possibly because of
the lack of the needed states to represent accurately the
content delivery process. MSIR model performs well, possibly
because it has the state M (maternally derived immunity) that
corresponds to the state T (Turn-down) state of the proposed
model. It performs worse than the proposed model since it
does not distinguish the Active users with the Infected, nor
the Recovered to the Deleted. The proposed model, provides
more variables for customization, and it can be customized to
represent the process of content delivery more accurately.

A metric with significant importance in the content delivery
process is the Quality of Experience (QoE) for the users. In
[3] Yin et al defined quality metrics taking into consideration
the time spend in buffering a video compared to the total
viewing time to conclude about the QoE. They managed
to present results with mean value for the quality metric
greater than 0.99 with all measures greater than 0.95. In our

Fig. 10: Time needed for the Prediction of the Epidemic
Behaviour
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Fig. 11: Fraction of intervals of QoE

approach and since we have a complete network architecture,
the MQM component is able to calculate the QoE based on
specific dynamical algorithms [35]. The algorithms combine
TCP-, buffer-, and media content-related metrics as well as
user requirements and expectations to extract a value in the
range 0 to 1, that describes the QoE for each video stream.
The closest to 1 implies the highest quality. We collected
monitoring results for a specific popular VoD two days with
normal demand. The first day the MDM was disabled and
none of its functionalities were used. As shown in Fig. 11
the fraction confidence interval of QoE for the users when the
MDM is not utilized is higher than 0.90 while the mean value
is about 0.99. In the second day when we had the utilization
of MDM, the QoE remains over 0.94 for all cases with an
average of 0.999.

The rest of the section presents experimental simulation
results for evaluation of the performance and the offered
reliability in streaming activities, offered by the proposed
system. Towards implementing such scenario, a common look-
up application service for video streaming is set in each node,
to enable nodes requesting a stream from a certain user. Fig.12
shows that the number of the participating nodes is increasing,
when MDM-enhancing broadcasting is used, instead of a
generic broadcasting. This indicates the enhancement that has
been done by the MDM in the broadcasting process, whereas
the Community Streaming factor W, as introduced in [36],
indicates the level of robustness in receiving neighboring
feedback during the process of streaming. The total delay time
with the number of simultaneous transmissions is shown in
Fig.13. The total measured delay is significantly reduced in
the presence of MHGC (P2P delivery), whereas the utilization
of the existing infrastructure increases the overall delays when
multiple transmissions take place
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V. CONCLUSION

This paper presents a novel network architecture, a novel
epidemic spread model and two algorithms for optimal se-
lection of content delivery methods. The proposed epidemic
model was analysed and it was shown through simulation
results that it can describe the VoD process when the social
interactions among users are high for the specific VoD. Based
on the analysis we were able to perform prediction for the
VoD spread based on the model. The paper also presents two
algorithms that take advantage of epidemic models prediction
and time series analysis prediction for selecting the optimal
delivery method and for load balancing between data centers.
The experimental results prove that the prediction engine is
accurate and overall the content delivery process gets benefits
from the utilization of the model and algorithms. Future di-
rections in our on-going research encompass the further study
of the epidemic model for the export of multiple predicted
metrics that could be utilized by algorithms for a more accurate
forecast of the need or even a better localization of the demand.
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